The Effects of Immersion and Navigation on the Acquisition of Spatial Knowledge of Abstract Data Networks

James Henry, M.S. Nicholas F. Polys, Ph.D.

Virginia Tech

Network Topology

Knowledge about how a network is connected and organized. In STKE's case:

- Landmarks (hubs and outliers)
- Routes (signaling pathways between biochemical compounds)
- Survey

(organization, neighbors and groups)

Acquisition of Spatial Knowledge

Virtual Reality

- Immersion: display, tracking and input technology
- Techniques for Navigation, Selection, Manipulation
- Typically focused on wayfinding in **realistic**

environments

The Benefits of Immersion

- Immersion is the technology that enables 'Presence'; increasing by sensory substitution. For example:
- Field-Of-Regard (FOR)
- Field-Of-View (FOV)
- Head tracking
- Input devices
- Stereo rendering
- Display resolution

User Study

Goals

- Explore new methods of visualizing network data
- Test evaluation method for spatial knowledge of abstract graphs

Data & Platform

- STKE pathways viewed as a 3D network
- Stereo rendering (active), 6-DOF head and wand

Evaluation

- Immersive environment (FOR: 1 wall vs. 4 wall)
- Egocentric vs. Exocentric navigation

User Study Design

BIBD

Combination of phases

	Fly	Orbit/Rotate
1 wall	Scenario A	Scenario B
4 wall	Scenario C	Scenario D

. .

- 4 question types:
 - Survey Identify all of the neighbors of node X
 - Route How many nodes are between nodes X & Y
 - Landmark Which is the most connected node?
 - Survey How many nodes of type Z are in the graph?

Run in the VT CAVE (IS – 900 tracking) on one wall or three walls + floor Stimuli: STKE pathways (33-42 nodes in each trial) Built using DIVERSE and OpenSceneGraph

Navigation Techniques

What is Rotation / Orbiting?

- Exocentric
- Rotate world around selected Pivot node with thumb joystick
- Separate buttons for zoom-in & zoom-out

• What is **Flying**?

- Egocentric
- Point wand and press thumb joystick to move the view in world, changing Heading and Pitch

Demo

Flying by Pointing (Egocentric)

• Movie: for film mono rendering was used; rendering projected for physical camera

Navigation Mapping:

- has no roll
- requires ratcheting to see back side

Rotation (Exocentric)

• Movie: for film mono rendering was used; rendering projected for physical camera

- Navigation Mapping:
- has roll
- no ratcheting to see back side
- Zoom in/out uses two additional buttons

Participants in User Study

- Number of participants (n) = 24
- Participant demographics
 - Gender, Age
 - Computer and Gaming Experience

Significant Results

- PC experience (Correlation)
 - Prefer 4 walls
 - Prefer Rotation
- Task Performance (ANOVA)
 - Acquisition of Route Knowledge
 - Interaction of Navigation and FOR for accuracy
 - Acquisition of Survey Knowledge
 - Egocentric performs significantly better for accuracy

Route Knowledge: How many nodes between X & Y?

Interaction Effect

Parity of opposite conditions!

Tradeoff in **counting hops** between nodes:

- On One wall, Flying enables better accuracy;
- On Four walls, Rotation enables better accuracy.

Route Knowledge: How many nodes between X & Y?

Not quite significant, but points out the challenges (time to completion) to usability of more immersive (higher FOR) display environments...

Survey Knowledge: Count the number of type X nodes

Egocentric advantage

Counting nodes of a

certain type (e.g. membrane) -

Accuracy is significantly lower With the exocentric rotation technique.

When rotating the world, it seems difficult to keep track of which nodes have been counted.

Interpretations

- No clear winners overall
- Route and Survey counting tasks are especially susceptible to navigation and FOR manipulations
- Navigation and FOR interact and should be considered together

Implications

- Displays we need better interaction techniques to reduce time to completion in high FOR
- Navigation type we need to improve techniques for counting hops and groups
- Interaction of variables users rely on different perceptual cues depending on the size / surround of the display (FOR). We are not sure where these tradeoff thresholds might be!
- More research required!

Next Steps

- Apply this experimental method to different classes of network layout algorithms, display venues
- Test a combination navigation technique:
 if there is no selected node, fly;
 if a node is selected, rotate
- Assess significance of including a horizon line when the data does not imply one... and navigation mapping includes roll

Questions & Ideas ?

npolys@vt.edu WirginiaTech