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Abstract - In this paper, we describe our recent work on 

graph mining as applied to the cellular signaling pathways in 

the Signal Transduction Knowledge Environment (STKE) [1]. 

We present new algorithms and a graphical tool that can help 

biologists discover relationships between pathways by looking 

at structural overlaps within the database. We address the 

problem of determining pathway relationships by two data 

mining approaches: clustering and storytelling. In the first 

approach, our tool brings similar pathways to the same 

cluster and in the second, our tool determines intermediate 

overlapping pathways that can lead biologists to new 

hypotheses and experiments regarding relationships between 

the pathways. We formulate the problem of discovering 

pathway relationships as a subgraph discovery problem and 

propose a new technique called Subgraph-Extension 

Generation (SEG) that outperforms the traditional Frequent 

Subgraph Discovery (FSG) approach [2] by magnitudes. Our 

developed tool also provides an interface to compare these 

two approaches with a variety of similarity measures and 

clustering techniques as well as in terms of computational 

performance measures including runtime and memory 

consumption. 

Keywords: Apriori, Cellular Signaling Pathway, Clustering, 

Storytelling, Subgraph-Extension Generation, FSG. 

 

1 Introduction 

  In this work we examine the algorithmic and 

computational costs for discovering relationships between a 

set of graphs. Understanding these costs and benefits is a 

crucial step to building visual analytic applications that 

perform interactively and in real-time. In order to illustrate 

our techniques, we apply and evaluate them using cellular 

signaling pathways organized as connection maps from the 

STKE dataset [1]. These pathways are essentially 

relationships between bio-molecular components such as 

proteins that transform cellular ‘signals’ to appropriate 

biological responses. Our observation is that a relation 

between two components of a signal can appear in more than 

one pathway that might aid the biologists to identify a new 

phenomenon. 

 A cellular signaling pathway contains a set of molecules 

interacting with each other through signals and conveying 

information, generally from the outside of the cell to inside 

[3]. The Signal Transduction Knowledge Environment 

(STKE) dataset covers signal transduction in biology, 

allowing a study of how cells interact with each other through 

chemical signals. Scientists all over the world documented 

different cell signaling pathways over time. Still, there can be 

some undiscovered relationships between various pathway 

components due to the lack of capable tools to mine and 

analyze the existing database. 

 The ultimate goal of our project is to build a tool that 

can discover relationships between pathways using graph 

mining approaches. The resultant pathway relationships could 

then help biologists to analyze the biochemistry and discover 

new relationships between them. In this work, we examine 

different algorithms to mine for frequent or common 

subgraphs among the signaling pathways. These frequent 

subgraphs are then used to calculate the similarities between 

every pair of pathways. We use the discovered subgraphs to 

cluster pathways or to discover a ‘story’, or connection, 
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Figure 1. Visual analytic interface of the developed tool. 



between a pair of pathways. We have developed an 

interactive tool by which users can control the parameters for 

different phases of the pipeline. Additionally, we provide a 

runtime analysis for each of the algorithms implemented. 

Figure 1 shows two screenshots illustrating the interactive 

tool and the interface for storytelling. 

 In this work, we propose a graph-based storytelling 

approach that is similar to the text-based storytelling 

described by Kumar et al. [4]. The graph-based storytelling is 

more robust than the text-based storytelling approach 

considering the fact that texts are sometimes misleading and 

can generate meaningless stories. We insure that subsequent 

pathways in a generated story have overlapping signals 

between them- which text-based storytelling algorithms do 

not guarantee. As a result, chances that our algorithm 

generates misleading or meaningless stories are lower than 

the text-based storytelling. 

 The rest of the paper is organized as follows. Section 2 

describes some of the related works. We describe the overall 

design in Section 3. Some illustrative experimental results are 

described in Section 4. We conclude this paper in Section 5. 

2 Literature review 

 There are some existing tools that help biologists to 

visualize and analyze signaling pathways. PathCase [5] 

presents a way to visualize signaling pathways as nested 

graphs and employs four abstraction levels to counter for the 

visual complexity of signaling pathways. Xu et al. [6] design 

a model for the WNT signaling pathway, a gene regulation 

route of living cells of various organisms. Schreiber [7] 

presents a different approach using a constraint graph 

drawing algorithm for visually comparing metabolic 

pathways of different species. In this system, similar parts of 

the similar pathways of different species are placed side by 

side thereby making it easier to identify similarities and 

dissimilarities between the pathways. However, none of these 

tools provides any automatic mechanism to discover frequent 

subgraphs from the pathways with the aim of graph-

similarity-based discovery of pathway relations. We aim to 

discover relations between pathways using clustering and 

storytelling algorithms. Our proposed approaches are 

automated and depend on discovered frequent subgraphs 

offering a graph-similarity-based relation discovery tool. 

 There has been some previous research related to 

clustering pathways. For example, ASK-GraphView [8] is a 

large scale graph visualization tool that is used for navigating 

large graphs. It provides a way to cluster the graphs using 

structural clustering for visualizing the graphs in a more 

compact form. We aim to find clusters automatically using 

discovered knowledge on the appearance of frequent 

structures in the pathways. Miyake et al. [9] present a 

comparison technique based on clustering between pathways. 

It introduces a scoring system to measure the similarity 

between pathways. Although [9] conveys significant 

importance to their corresponding biological datasets, it does 

not properly fit to the STKE dataset of our work. Moreover, 

their generated clusters are not evaluated using standard 

measures of clusters' validity. 

 Our approach depends on graphs for modeling the 

STKE dataset and takes advantage of graph-based data 

mining techniques. There are some well-known subgraph 

discovery techniques like FSG (Frequent Subgraph 

Discovery) [2], gSpan (graph-based Substructure pattern 

mining) [10], DSPM (Diagonally Subgraph Pattern Mining) 

[11], and SUBDUE [12]. Most of these systems have been 

tested on real and artificial datasets of chemical compounds. 

In our work, we discuss a system that can perform frequent 

subgraph discovery on large pathway-graphs. We propose a 

novel Subgraph-Extension Generation (SEG) mechanism that 

significantly outperforms the original FSG [2]  approach. 

 To the best of our knowledge, we introduce the first 

automated graph-based technique to find relationships 

between pathways. We also propose the use of Master 

Pathway Graph (MPG) that helps our Subgraph-Extension 

Generation (SEG) mechanism to discover subgraphs in an 

efficient manner. We offer a fully automated system that 

utilizes enhanced subgraph discovery techniques and 

provides interactive feedback as to their effectiveness and 

performance. 

3 Design 

 In this section, we give an overview of our proposed 

system. Figure 2 shows the design pipeline. It contains five 

major modules: (1) Preprocessor, (2) Frequent Subgraph 

Discovery Module, (3) Clustering Module, (4) Nearest 

Neighbours (NN) Module and (5) Storytelling Module. 

 (1) Preprocessor: This module takes inputs directly from 

the STKE dataset and converts each pathway to a graph 

object. The aim of this module is to provide an efficient data 

structure to store the pathways effectively for the subgraph 

discovery process. Additionally, it generates the Master 

Pathway Graph (see  Definition 1) which assists Subgraph-

Extension Generator (SEG) used by the frequent subgraph 

discovery module. 

 Definition 1. A Master Pathway Graph (MPG) is a 

graph that contains all the relations (edges) of all the 

pathways but contains them only once. Example: let P1, P2, 

P3 and P4 be the pathways in the dataset. If their 

corresponding edge-sets are defined by P1(e1, e2, e5, e6, e7), 

P2(e3, e4, e5, e8), P3(e4, e5, e6, e7) and P4(e3, e4, e5, e6, e8), then 

the edge-set of their MPG would be MPG(e1, e2, e3, e4, e5, e6, 

e7, e8). 

 (2) Frequent Subgraph Discovery Module: This module 

uses our SEG approach to discover frequent subgraphs from 
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Figure 2. Design pipeline. 



the pathways. The developed tool also provides the 

traditional FSG approach for comparison. The details of the 

FSG and the SEG approaches are described in section 3.1.1. 

 (3) Clustering Module: The clustering module generates 

clusters of pathways and provides comparison between two 

popular clustering techniques: Hierarchical Agglomerative 

Clustering (HAC [13]) and k-means [14]. It also provides an 

evaluation of the generated clusters with a graphical interface 

using Average Silhouette Coefficient (ASC [15]) at different 

numbers of clusters. 

 (4) NN Module: Given an input pathway P and an 

integer n (where n<N and N=total number of pathways), the 

NN module provides n number of most similar pathways in 

their descending order of similarity values calculated with 

respect to pathway P. We use cover tree [16], an indexing 

mechanism for efficient nearest neighbor search. 

 (5) Storytelling module: Given two pathways, the 

storytelling module finds a story (see Definition 2) between 

these two pathways. Users can visually investigate the graph-

structures of the intermediate pathways of a story using our 

tool. We generate stories between all possible pairs of the 

pathways, some of which might reveal insights to the 

biologists in developing a new pathway. Consider the 

scenario where a biologist wants to uncover the relationship 

between a gene and a phenotype. The pathways related to this 

gene and the phenotypes are not enough to establish a logical 

relationship. Given two pathways (and the database of all 

known pathways), our tool can provide a set of possible 

relationships in the form of a story with visual representations 

that would help the biologist to analyze and discover new 

relationships. 

 Definition 2. A story from pathway P1 to pathway Pz is 

a sequence of some intermediate pathways P2, P3, ..., Pz-1 

such that similarity sim(Pi, Pj)>0, 1≤i<z, and j=i+1. In this 

work, we denote the length of a story by z, i.e., the number of 

pathways involved in the story. A story of length 2 does not 

have any intermediaries. 

3.1 Implementation details 

 In the following subsections, we describe all the 

algorithms we have used to develop the tool. 

3.1.1 Apriori paradigm 

 One of the baseline approaches to mining subgraphs 

from the pathways database is the Apriori paradigm [17], 

which was originally developed to solve the association rule 

mining problem of market basket datasets [18]. The aim of 

the original Apriori algorithm is to find frequent itemsets 

from a list of transactions. The algorithm concentrates on the 

corresponding supports of the items and itemsets. In our 

work, we replace transactions with pathways, items with 

edges and item-sets with subgraphs (i.e., sets of connected 

edges). The association rule mining problem of market basket 

data analysis has an analog in our research area as the 

problem of frequent subgraph discovery. In this subsection, 

we illustrate the internal mechanism of our Apriori paradigm 

and propose an enhancement to generate candidate subgraphs 

efficiently. 

Table 1 portrays the modified high-level algorithm for 

frequent subgraph discovery using the Apriori paradigm. The 

apriori_gen procedure in the algorithm joins and prunes 

the subgraphs. In the join operation, a k-edge candidate 

subgraph is generated by combining two (k-1)-edge 

subgraphs of Lk-1. This k-edge subgraph becomes a member 

of Lk only if it passes the min_sup threshold. We use the 

FSG [2] approach to join two subgraphs to obtain a higher 

order subgraph. The details are given in section 3.1.1.1. We 

also propose a novel mechanism called Subgraph-Extension 

Generation (SEG) in section 3.1.1.2 which is more efficient 

than the FSG approach. 

 We define importance factor of a subgraph, sfipf (short 

for subgraph frequency × inverse pathway frequency) of a 

subgraph si of pathway j as follows: 
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where nj is the total number 

of subgraphs in pathway j and { }
jij psp ∈: indicates the 

number of pathways where subgraph si  appears. |D| is the 

total number of pathways in the dataset. We say, 

ijji ipfsfsfipf ×=, . We use an sfipf threshold min_sfipf in 

the find_frequent_1-edge_subgraphs procedure to 

pick up only the important edges for subgraph discovery. 

 An edge of a pathway of the STKE dataset is directed 

(upstream/downstream) and contains one of the four 

signaling activities: stimulatory(+), inhibitory(-), undefined 

effect(?) or neutral(0). The directions and edge attributes are 

strictly considered during the comparison between two 

subgraphs in our implementation. For example, consider that 

there is a stimulatory relation between two vertices v1 and v2 

in a subgraph X. Consider we have another subgraph Y that 

looks same as X, but the edge between v1 and v2 of Y is 

inhibitory. Our implementation considers that these two 

Table 1. Apriori algorithm. 

Input: 

D: a database of pathway-graphs 

min_sup: the minimum support threshold 

Output:  

L: frequent subgraphs in D 

Method: 

(1) L1= find_frequent_1-edge_subgraphs(D); 

(2) for (k=2; Lk-1≠Φ; k++){ 

(3)     Ck=apriori_gen(Lk-1); 

(4)     for each pathway-graph g∈D{ 

(5)         Cg= CkI g; 

(6)         for each candidate subgraph s∈Cg 

(7)             s.count++; 

(8)     } 

(9)     Lk={ s∈  Ck | s.count ≥ min_sup} 

(10) } 

(11) return L= kU Lk 

 



subgraphs are different differing in one edge. Therefore, the 

implementation takes the edge attributes into consideration as 

well as the direction of the edges. 

3.1.1.1 FSG 

 In the FSG approach, we generate a (k+1)-edge 

candidate subgraph by combining two k-edge subgraphs 

where these two k-edge subgraphs have a common core 

subgraph [2] of (k-1)-edges. This approach requires time-

consuming comparisons between core subgraphs while 

generating a higher order subgraph. Although this approach is 

very fast for small graphs, it becomes inefficient for large 

graphs due to large number of blind attempts to combine k-

edge subgraphs to generate (k+1)-edge subgraphs. 

 Consider an Apriori's iteration in which we have a total 

of 21 5-edge subgraphs in the candidate list L5. We try to 

generate 6-edge subgraphs from this list. Consider the 

situation of generating candidates using one 5-edge subgraph 

(e.g., the subgraph lmnop of Figure 3) of L5. The original 

FSG approach tries to combine all remaining 20 other 

subgraphs with lmnop but succeeds, let us assume, only in 

three cases. Figure 3 illustrates that lmnop is successfully 

combined with only mnopq, mnopr and mnops. All 17 other 

attempts to generate a 6-edge subgraph with lmnop fail 

because the 4-edge core-subgraphs, analyzed in this case, do 

not match. Figure 3 shows the attempts to generate good 

candidates for just one subgraph (lmnop). For all the 

subgraphs in L5, there would be a total of 21×20 blind 

attempts to generate 6-edge subgraphs. Some of these 

attempts would succeed, but most would fail to generate 

acceptable 6-edge candidates. This algorithm cannot avoid 

comparing a large number of core subgraphs to generate all 

candidates. We have reduced the number of comparisons by a 

significant degree with our Subgraph-Extension Generation 

approach. The technique is described in the following sub-

section. 

3.1.1.2 Subgraph Extension Generation (SEG) 

 Rather than trying a brute-force strategy of comparing 

all possible combinations (e.g., FSG), we use the master 

pathway graph (MPG) as the source of background 

knowledge to entirely eliminate the unsuccessful attempts at 

generating (k+1)-edge candidate subgraphs from k-edge 

subgraphs. We maintain a neighboring-edges' list for each k-

edge subgraph and generate candidates for frequent higher 

order subgraphs by taking edges only from this list. 

 Figure 4 shows the Subgraph-Extension Generation 

mechanism for subgraph lmnop, which can be compared with 

the FSG approach of Figure 3. The gray edges of Figure 4 are 

the edges of the 5-edge subgraph which we want to extend to 

generate 6-edge candidates. The black lines indicate the 

neighboring edges which extend the 5-edge gray subgraph 

maintained in our MPG. The same instance is used for both 

Figure 3 and Figure 4 for easy comparison. The neighboring-

edges' list of lmnop contains edges {q, r, s}. Unlike Figure 3, 

the example presented in Figure 4 uses the Subgraph-

Extension Generation technique and does not try to blindly 

generate higher order subgraphs 20 times. Rather, it proceeds 

only three times, using the constraints coming from 

knowledge about the neighboring edges of lmnop in the 

MPG. It results in only three attempts to generate higher-

order candidate subgraphs. None of these attempts fails at 

step 3 of the Apriori algorithm (Table 1) because the 

mechanism depends on the physical evidence of possible 

extension. Therefore, SEG offers a novel knowledge-based 

mechanism that eliminates unnecessary attempts to combine 

subgraphs. All the generated subgraphs that pass the min_sup 

threshold are stored in a subgraph-pathway matrix which is 

used in the clustering or storytelling phase later. 

3.1.2 Pathway clustering and cluster's evaluation 

 We use commonly recognized methods to group 

pathways:  Hierarchical Agglomerative Clustering (HAC 

[13]) and k-means [14] clustering. The tool provides 

evaluation in a broad range of generated clusters. Our tool 

also provides a selection of different types of similarity 

measures for the resulting clusters: Cosine, sfipf weighted 

Cosine, Jaccard, Dice, Overlap and Matching coefficients. 

 To evaluate the clustering results, we used unsupervised 

measure of cluster validity: Average Silhouette Coefficient 

(ASC) [15]. An overall measure of goodness of a clustering 

can be obtained by computing the average silhouette 

coefficient of all data points [19]. 

3.1.3 Storytelling 

 We use bidirectional search to find a story between two 

pathways P1 and Pz. In a bidirectional search algorithm two 
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Figure 3. Attempts to combine lmnop with other 5-edge 

subgraphs of (L5). 

 
Figure 4. 6-edge Subgraph-Extension Generation for the 5-

edge subgraph lmnop. 



simultaneous searches proceed in two directions: one forward 

from the start pathway (P1), and one backward from the goal 

(Pz). The search stops when the two searches meet in the 

middle. A path from P1 to Pz forms a story. Figure 5 portrays 

a sketch of the bidirectional search used in our tool. The 

search proceeds from one pathway Pi to its n most nearest 

pathways. The length of a story and the search time depend 

on the branching factor n. We use bidirectional search for 

every pair of pathways to generate all possible stories. 

4 Experimental results 

 To assess the power and performance of these 

algorithms we conducted an experiment on the STKE dataset. 

All the results of this paper are generated in a machine with 

Intel quad core processor and 8GB memory. The tool is 

implemented in Java and the JVM was running under 

Windows Vista 64-bit platform during all the experiments. 

4.1 Dataset 

 The STKE dataset [1] used in this work contained 50 

pathways. Figure 6 shows that larger pathways are scarce in 

the dataset compared to smaller pathways. The largest 

pathway has 101 edges and the smallest pathway has 2 edges. 

Since there are a total of 1376 unique relations in the dataset, 

our MPG contains a total of 1376 edges. Figure 7 provides 

the number of edges and pathways left as functions of sfipf 

threshold min_sfipf. It shows that large min_sfipf results in 

filtration of large amount of edges as well as pathways. 

4.2 Subgraph discovery 

 The number of generated subgraphs in our subgraph 

discovery process depends on the min_sfipf and min_sup 

thresholds. Figure 8 shows experimental results with varying 

min_sfipf and min_sup. It shows that the subgraph discovery 

module discovers higher amount of frequent subgraphs with 

lower min_sfipf and min_sup thresholds. The clustering and 

the storytelling parts require large amount of subgraphs for 

better results. This means, we can find better relationships 

and clusters among pathways with lower min_sfipf and 

min_sup values. On the other hand, lower min_sfipf and 

min_sup values results in longer runtime in the subgraph 

discovery process. Additionally, lower thresholds require 

more memory due to large amount of generated candidate 

subgraphs during each iteration of the Apriori paradigm. The 

tradeoff depends on the machine where our tool is running. 

 A performance comparison between the FSG and our 

SEG approach is given in Figure 9. Due to the significant 

speed of SEG, the gray line drawn for it appears to be linear 

and flat in comparison to the black line of the FSG approach, 

although the actual behavior of SEG is not really linear. The 

curve maintains its hat-like shape, typical of the Apriori 

approach, but due to the scale necessary to show the FSG 

results it is not clearly visible in Figure 9(a). We changed the 

scale in Figure 9(b) to show the actual behavior of SEG. 

 Figure 10 depicts the reason why the SEG approach is 

more efficient than the FSG approach. The figure compares 

numbers of attempts to generate k-edge subgraphs by the FSG 

and SEG approaches. The SEG approach outperforms the 

FSG approach by a high magnitude due to the lower number 

of attempts used to generate higher order subgraphs by 

avoiding blind attempts. Table 2 shows that in every case 

except for k=21, SEG saved a huge percentage of blind 

attempts generated by the FSG approach. The SEG approach 

saved 90.26% of the attempts while generating 16-edge 

subgraphs from frequent 15-edge subgraphs. Since 15-edge 

subgraphs are the most frequent ones (1117 15-edge 

subgraphs were discovered), obviously the number of 

attempts to construct 16-edge subgraphs from 15-edge 

subgraphs reaches the maximum for the FSG approach in 

Figure 10. Also, Figure 9 shows that both the curves reach 

their peaks near 16-edge subgraphs. Overall attempts saved 
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Figure 5. Bidirectional search for storytelling. 
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Figure 6. Number of pathways as function of size-range. 
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Figure 7. (a) Number of edges left in MPG as function of 

min_sfipf, (b) Number of pathways left as function of 

min_sfipf. 
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by the SEG approach in this experiment was 89.52% which 

saves 99.39% runtime used by the FSG approach. 

4.3 Clustering 

 We used HAC and k-means to automatically cluster the 

pathways. Figure 11 provides an unsupervised evaluations at 

different numbers of clusters both for HAC and k-means 

using five different similarity measures. The plot shows that 

HAC provides higher ASC than the k-means clustering using 

any similarity measure for the STKE dataset. 

 The clusters' accuracy also varies depending on the 

min_sup and min_sfipf thresholds. Figure 12(a) and (b) 

provides two ASC contour maps at 10 clusters for HAC and 

k-means respectively. Figure 12 (a) shows that HAC 

produces best results in the bottom left corner of the plot with 

ASC=0.20. Similarly, Figure 12 (b) shows that k-means 

generates its best clusters in the region with ASC=0.14 of the 

plot where min_sup and min_sfipf thresholds are small. 

Therefore, both HAC and k-means generate better clusters 

with lower min_sup and lower min_sfips thresholds. Earlier 

in Figure 8, we showed that lower min_sup and min_sfipf 

thresholds results in higher amount of subgraphs. Since, 

lower min_sup and min_sfipf results in larger amount of 

subgraphs, any clustering algorithm can better separate the 

groups which results in high quality clusters. Figure 12 also 

shows that HAC performs better than the k-means clustering 

since HAC has higher ASC (0.20) than the ASC (0.14) of  k-

means in corresponding bottom-left corners. 

4.4 Storytelling 

 We attempted to generate stories for all possible pairs of 

pathways. But, not all pairs have stories. Some pairs do not 

have any relationship between them and with other pathways. 

Number of stories and story lengths vary with branching 

factor b used in the bidirectional search algorithm for 

storytelling. Figure 13 (a) shows that a small branching factor 

has the tendency to generate few stories, and large branching 

factor generally generates lots of stories. Figure 13 (b) also 

shows that total number of generated stories is larger with 

high branching factor. Figure 13 (c) depicts that large 

branching factor provides longer stories. Finally, Figure 13 

(d) shows time to generate all possible stories using different 

branching factors. Although the bidirectional storytelling 

k

(a)

3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

m
s

)

0

50x103

100x103

150x103

200x103

250x103

300x103

350x103

FSG

SEG

min_sup= 4.0%
min_sfipf= 0.01

k

(b)

3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

T
im

e
 (

m
s

)

0

2x103

4x103

6x103

FSG

SEG

 
Figure 9. Runtime comparison between FSG and SEG. 
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Figure 10. Numbers of attempts to discover k-edge 

subgraphs by FSG and SEG. 

 
Table 2. Reduction of blind attempts by the SEG. 

k 

# of discovered k-

edge Subgraphs 

Time Saved 

(%) 

Attempts Saved 

(%) 

2 186 99.83 98.98 

3 246 98.33 86.15 

4 305 98.57 86.38 

5 323 98.95 86.91 

6 313 98.96 85.64 

7 279 98.88 83.25 

8 263 98.67 78.91 

9 292 98.38 74.76 

10 364 98.58 74.75 

11 470 98.76 78.08 

12 608 99.04 81.84 

13 785 99.22 85.02 

14 980 99.38 87.63 

15 1117 99.48 89.48 

16 1075 99.53 90.26 

17 804 99.51 89.4 

18 430 99.34 85.22 

19 141 98.76 71.22 

20 20 96.15 9.19 

21 1 75.74 -574.47 
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Figure 11. ASC at different numbers of clusters using (a) 

HAC and (b) k-means. 
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(a)                                           (b) 

Figure 12. Contour map for ASC at 10 clusters (a) 

Hierarchical Agglomerative (b) k-means Clustering. 



algorithm generates longer stories with higher branching 

factor, the process becomes slower. 

5 Conclusions 

 In this work, we developed a tool that would help 

biologists to find relationships between cellular signaling 

pathways. We have used enhanced algorithms in different 

phases of the work and given comparisons with traditional 

data mining approaches. In this work, we propose our novel 

Subgraph-Extension Generation approach that outperforms 

the FSG approach by high magnitude. We addressed the 

problem of determining pathway relationships by clustering 

and storytelling. We decomposed the problem of pathway-

relation search into frequent subgraph discovery problem and 

provided a graph-based solution that depends on the 

structural overlaps between the pathways. The tool would 

help biologists as well as data mining researchers to analyze 

performance of different algorithms. It provides a 

visualization of the efficiency of different algorithms and 

evaluations of clusters. [20] contains all our source codes, 

necessary libraries, the dataset and samples of the generated 

stories. In future, we want to incorporate text mining features 

in our tool so that we can find relations between pathways 

using their descriptions. We could then compare the 

traditional text-based approach with our graph-based model. 
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Figure 13. (a) Length of stories as function of story length, 

(b) Total stories generated from all pairs as function of b, 

(c) Longest story found as function of b, (d) Time to 

generate all possible stories as function of b. 


