
Workshop Web3D 2011
Advanced X3D

Yvonne Jung

Fraunhofer
Fraunhoferstraße
64283 Darmstadt64283 Darmstadt
Germany

Tel +49 6151 155 290
yvonne.jung@igd.fraunhofer.de
www.igd.fraunhofer.de/vcst

Yvonne Jung

IGD
Fraunhoferstraße 5
64283 Darmstadt

1

64283 Darmstadt

Tel +49 6151 155 290
yvonne.jung@igd.fraunhofer.de
www.igd.fraunhofer.de/vcst

NEW X3D VERSION 3.3 NODES &
INSTANT REALITY EXTENSIONS

2

NEW X3D VERSION 3.3 NODES &
INSTANT REALITY EXTENSIONS

© 2011 Fraunhofer IGD

VOLUME RENDERING COMPONENT

3

VOLUME RENDERING COMPONENT

© 2011 Fraunhofer IGD

VR Training System

Motivation: Medical Training Simulations

Model Generation

VR Training System

Volume Rendering

VR Training System

Simulations

Simulation

4© 2011 Fraunhofer IGD

Haptic Rendering

VR Training System

Motivation: Medical Training SimulationsMotivation: Medical Training Simulations
� Medical training simulations are important

� � No training with living humans

� Training simulations are expensive, because they
require knowledge of many domains

� Developers should concentrate on application and
special problem cases

� Reducing complexity by using standards

5

� ISO standard X3D already provides runtime for
developing interactive applications

� X3D extension proposal for Volume Rendering
Component from Medical Working Group:
http://www.web3d.org/x3d/workgroups/medical/

� X3D-based interaction framework for device
management and haptics part of InstantReality:
http://doc.instantreality.org/apidocs/instantio/

© 2011 Fraunhofer IGD

Volume Rendering

� Volume rendering is alternative form of data � Volume rendering is alternative form of data
representation compared to traditional polygonal form

� Volume data represents three dimensional
block of space that contains some data

� Indirect volume rendering techniques
generate geometry from volume data

� E.g. via “Marching Cubes”

� Direct volume rendering is also able to cope
with semi-transparent features

Shape {

6© 2011 Fraunhofer IGD

representation compared to traditional polygonal form

Direct volume rendering is also able to cope

Shape {

geometry DEF tri IndexedFaceSet {

coord DEF coord Coordinate {}

}

}

DEF iso IsoSurfaceGenerator {

volumeUrl "Engine.nrrd"

isoValue 0.2

}

ROUTE iso.coord_changed TO coord.set_point

ROUTE iso.index TO tri.coordIndex

SliceSet

SliceSet : X3DViewDependentGeometryNode {

...

SFFloat [in,out] sliceDistance 1

SFVec3f [in,out] size 1 1 1

}

� 3D-texture-based slicing

� Rendering of data set via viewport-aligned proxy

� Approach is easy to integrate in scene-graph and some node proposals already exist

� …but it is inflexible and exhibits slicing as well as quantization artifacts

� The SliceSet node is a special geometry node

� Each slice/polygon is clipped by the bounding box sides and defined by 3 to 6 vertices

� Each vertex gets a 3D texture coordinate defining a normalized position inside the

7

aligned proxy-geometry that slices bounding box

graph and some node proposals already exist

…but it is inflexible and exhibits slicing as well as quantization artifacts

Each slice/polygon is clipped by the bounding box sides and defined by 3 to 6 vertices

Each vertex gets a 3D texture coordinate defining a normalized position inside the bbox

© 2011 Fraunhofer IGD

GPU-based Singlepass- Raycasting

� Early GPU-based implementations used multi-pass methods� Early GPU-based implementations used multi-pass methods

� Volume is traversed along a single ray per pixel in one rendering pass (in GLSL

� Shader Model 3.0 or better needed

� Special treatment for handling intersections with standard geometry required

� Internally handled by rendering standard scene

� Advantages: better quality (no slicing artefacts etc.), more flexibility, …

� Disadvantages: high computational costs in shader programs can lead to low performance

� � Techniques for improving performance needed!

Raycasting

pass methods

8© 2011 Fraunhofer IGD

pass methods

Volume is traversed along a single ray per pixel in one rendering pass (in GLSL Shader)

Special treatment for handling intersections with standard geometry required

Internally handled by rendering standard scene-graph first into additional texture

Advantages: better quality (no slicing artefacts etc.), more flexibility, …

programs can lead to low performance

Performance Improvements

� Image-order empty-space skipping

� Checks for empty regions inside and outside the volume during its traversal (left)

� Object-order empty-space skipping

� Skips empty regions before and after traversal of volume (middle)

� Approximation through bounding geometry (box or better, right image)

� Calculation of optimal start and end position of ray and encoding in textures

� 1st texture contains start position image

� 2nd texture contains ray direction and length

9© 2011 Fraunhofer IGD

Checks for empty regions inside and outside the volume during its traversal (left)

Skips empty regions before and after traversal of volume (middle)

Approximation through bounding geometry (box or better, right image)

Calculation of optimal start and end position of ray and encoding in textures

texture contains start position image

texture contains ray direction and length

Quality Improvements

� Artifacts at different stages of rendering pipeline possible

� Several techniques for improving image quality already exist

� Shading and lighting requires normal information � computation of gradients

� Pre-computed normals

� Fast, but more memory and quantization artifacts

� On-the-fly normals: e.g. central differences, Sobel

� Better quality and lower memory consumption

� � Good quality–speed trade-off

10© 2011 Fraunhofer IGD

Artifacts at different stages of rendering pipeline possible

Several techniques for improving image quality already exist

computation of gradients

Fast, but more memory and quantization artifacts

Sobel filter

Better quality and lower memory consumption

Additional Techniques

� Interleaved Sampling (left)

� Avoids oversampling in datasets with high frequencies� Avoids oversampling in datasets with high frequencies

� Adding varying offset on start positions of rays

� Interleaved pattern reduces wood grain artefacts caused by under sampling

� Computational cheap, but at low sampling rate dithering pattern visible

� Boundary Enhancement (right)

� Emphasizes border between different tissues via gradient magnitude modulation:

� Less noise in nearly homogenous regions (depending on the gradient’s quality)

((()))gek
srcG src gc gsk k f sα α= + ∇

Avoids oversampling in datasets with high frequencies

11© 2011 Fraunhofer IGD

Avoids oversampling in datasets with high frequencies

Adding varying offset on start positions of rays

Interleaved pattern reduces wood grain artefacts caused by under sampling

Computational cheap, but at low sampling rate dithering pattern visible

Emphasizes border between different tissues via gradient magnitude modulation:

Less noise in nearly homogenous regions (depending on the gradient’s quality)

((()))ge

Pre-Integration

� Volume rendering integral (emission–absorption model):

� Besides dataset, transfer function (maps s to optical properties) can also contain high frequencies

� Post-interpolative classification qualitatively better than pre

� Product of high frequencies avoided by sub-dividing volume rendering integral into two integrations

� One numerical integration for scalar field s and one for transfer functions

� Pre-integration deals with second by computing pre

� Contains colour and opacity per slab (i.e. ray segment)

� � Higher quality and better performance

∫+
∫

=
∫−

−
D dtt

dtt

dsesqeIDI

D

D

s
)(

)(

)()(
κ

κ

12© 2011 Fraunhofer IGD

absorption model):

to optical properties) can also contain high frequencies

interpolative classification qualitatively better than pre-interpolative classification

dividing volume rendering integral into two integrations

and one for transfer functions q and κ

integration deals with second by computing pre-integration texture for sample pairs

Contains colour and opacity per slab (i.e. ray segment)

Higher quality and better performance

∫+
∫

=
∫−D

s

dtt

dsesqeIDI ss

0

0
)(

0)()(
κ

Internal Shader Framework
� Volume rendering framework based on OpenSG

� Shaders implemented in GLSL

� Completely GPU-based for higher quality and better
load sharing between GPU and CPU

� CPU handles haptics and collision

� Core components

� VolumeNode holds volume and settings

� VolumeViewport renders volume data +
scene-graph for handling intersections with

13

scene-graph for handling intersections with
standard polygonal geometry

� Modular structure

� Different modules (e.g. RayGeneration) for
different techniques (e.g. interleaved)

� � Usage of shader compositing: each
module owns special shader fragment

� Extensible: to integrate new method only
new module with shader fragment needed

� Approach fits with new X3D 3.3 proposal

© 2011 Fraunhofer IGD

X3D Integration via Volume Rendering Component
DEF volume VolumeData {

dimensions 256 256 128

voxels [

ImageTexture {

url "engine.nrrd"

}

]

renderStyle ComposedVolumeStyle {

renderStyle [

ShadedVolumeStyle {}ShadedVolumeStyle {}

OpacityMapVolumeStyle {

transferFunction ImageTexture {

url "engineTransfer.png"

}

type "preintegrated"

}

BoundaryEnhancementVolumeStyle {}

]

}

}

�

�

Integration via Volume Rendering Component
renderSettings [

AccelerationVolumeSettings {

boundingVolumeType "boundaryGeometry"

traversalFunction "blockSkipping

}

NormalVolumeSettings {

algorithm "onlineCentralDifferences"

}

RayGenerationVolumeSettings {

type "interleaved" # "simple"

14© 2011 Fraunhofer IGD

type "interleaved" # "simple"

stepSize 0.004

}

]

RenderSettings extend X3D 3.3 Volume Rendering
proposal for controlling the quality-speed trade-off

Introducing node for managing normals

Some Images

15© 2011 Fraunhofer IGD

Excursus: Haptic Rendering

3D interaction
via original
handles

Y. Jung et al. Using X3D for medical training simulations. In Proc. Web3D 2008, ACM.

� System Design

� X3D Volume Rendering component

� X3D Script node for interaction logic

� InstantReality extension “InstantIO”

� Connecting haptic devices

� Interaction modes

� Camera and tool navigation, milling

� Application logic

16© 2011 Fraunhofer IGD

� Implemented in Java embedded in Script

� Camera + tool position for visualization

� Tool position + state for manipulation

� Responsible for haptics calculations

� Haptics requires higher frame-rate of 1 kHz

� Calculations in extra Java thread

� � Connected directly to IO subsystem

� Direct volume haptics for unified approach

MULTI-PASS NODE EXTENSIONS

17

PASS NODE EXTENSIONS

© 2011 Fraunhofer IGD

Tissue Manipulation: Milling

RenderedTexture : X3DEnvironmentTextureNode {

SFNode [] textureProperties NULL

MFNode [] excludeNodes []

SFString [in,out] update "NONE"

SFNode [in,out] viewpoint NULL

SFNode [in,out] background NULL

SFNode [in,out] fog NULL

SFNode [in,out] scene NULL

SFNode [in,out] foreground NULL

MFInt32 [in,out] zOffset []

MFNode [in,out] targets []

MFInt32 [in,out] dimensions [128 128 4]

MFBool [in,out] depthMap []

SFBool [in,out] readBuffer FALSE

SFMatrix4f [out] projection identity

SFMatrix4f [out] viewing identity

}

� Cutting requires persistent changes of volume

� Texture updates on GPU for rendering

� On CPU for collision detection/ response

� Transferring modified 3D texture to GPU every
frame to slow � split up into 2 separate updates

� CPU-part easy (simple array operation)

� GPU-part requires multi-pass rendering
and fine grained render state control

� Extending “RenderedTexture” to 3
rd

dimension

18© 2011 Fraunhofer IGD

� Extending “RenderedTexture” to 3 dimension

� Algorithm (called after moving cutter)

1. Pass 1: clear 2D texture (A)

2. Render mask to (x,y) and incr. Stencil

3. Render volume slice with zOffset := z

4. Pass 2: targets field refers to volume

5. Render quad textured with A at zOffset

� On-the-fly gradient computation essential for
correct shading

Multi pass rendering (1)

�Term "multi-pass" is twofold, it means

� Dynamically render a partial scene graph to an

� Render in an ordered sequence with different drawing operations

�RenderedTexture can be seen as FBO/

� First proposed in http://www.xj3d.org/extensions/render_texture.html

� Floating point textures can be forced �

19

" is twofold, it means both, the ability to…

render a partial scene graph to an offscreen texture

in an ordered sequence with different drawing operations

can be seen as FBO/ PBuffer abstraction

www.xj3d.org/extensions/render_texture.html

� higher precision + HDR rendering

© 2011 Fraunhofer IGD

Multi pass rendering (2)

�RenderedTexture node

� Image space rendering operations
(e.g. rendering to texture space or
NPR rendering)

� Accessing e.g. neighboring
information in shader programs

� Field "depthMap“ allows generation of
depth maps
� only useful in combination with
appropriate transforms

� projection (modelview projection � projection (modelview projection
matrix of camera space)

� viewing (model matrix of parent)

�TextureGrabOverlay node
� Child of new Foreground bindable

� Useful for special effects

� Contains grabbed frame buffer
(depending on its ordering)

� Field “texture” can be re-USE-d

TextureGrabOverlay : X3DOverlayNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] texture NULL

}

�X3D 3.2: Layering/ layout for
interaction and screen-space-text

� Only sub-trees, rendering order and
2d-positions are defined (� HUD)

� Need for screen space compositing

20

� Need for screen space compositing
effects (e.g. blur, glow � IBR)

�Post processing step in image
space to create visual effects

� Render window-sized, view-aligned
quads with some Appearance

� Additionally provide some way to
control the composition methods

© 2011 Fraunhofer IGD

Real-time Shadows in X3D

�Requirements

� Robust and intuitive usage

� Applicable for every type of scene

� No special treatment for shaders

�Solution

� No special shadow nodes, but
extension of existing light nodes for
regulating light and shadow

� Generic parameter/ abstraction level
for supporting different types of
implementations

� Example (values in [0,1])

SpotLight {

shadowIntensity 0.7

direction 0 -1 0

location -2 14 2

}

21© 2011 Fraunhofer IGD

Render State Control

�Access to color masking and arbitrary masking (i.e. stencil)
in combination with defined rendering order for compositing

�Special materials for front/ back faces beyond

�Possibility to disable depth writing or

�Compositing of objects or foregrounds

22

Access to color masking and arbitrary masking (i.e. stencil)
combination with defined rendering order for compositing

Special materials for front/ back faces beyond TwoSidedMaterial

writing or using different depth functions

foregrounds via blending, discarding, etc.

© 2011 Fraunhofer IGD

X3D Node Extensions – Appearance
Appearance : X3DAppearanceNode {

SFInt32 [in,out] sortKey 0

SFNode [in,out] fillProperties NULL

SFNode [in,out] lineProperties NULL

SFNode [in,out] material NULL

MFNode [in,out] shaders []

SFNode [in,out] texture NULL

SFNode [in,out] textureTransform NULL

SFNode [in,out] blendMode NULL

SFNode [in,out] stencilMode NULL

SFNode [in,out] colorMaskMode NULLSFNode [in,out] colorMaskMode NULL

SFNode [in,out] depthMode NULL

SFNode [in,out] faceMode NULL

}

AppearanceGroup : X3DGroupingNode {

SFBool [in,out] render TRUE

MFNode [in,out] children []

SFNode [in,out] appearance NULL

}

Appearance
� Appearance reveals how Shape node looks

like � extend shape component with some
new nodes for setting different render states

� …and Appearance with suiting fields

� Maps to GPU, no PROTOs possible!

� Need to control the color-/ stencil-/ depth-
buffer writing and merging � Requirement:
control over rendering order

� Introduce "sortKey" field (default is 0)

� More robust and intuitive than e.g. a
special ordering group for rendering

23

special ordering group for rendering

� Nodes for fine grained render state control

� If corresponding fields in Appearance
not set, standard settings are used

� New AppearanceGroup node useful, if whole
group of nodes share same material

� Field “render” (shared by all grouping
nodes) simplifies setting of visibility

© 2011 Fraunhofer IGD

X3D Node Extensions – Render States
StencilMode : X3DAppearanceChildNode {

SFString [in,out] stencilFunc "none"

SFInt32 [in,out] stencilValue 0

SFInt32 [in,out] stencilMask 0

SFString [in,out] stencilOpFail "keep"

SFString [in,out] stencilOpZFail "keep"

SFString [in,out] stencilOpZPass "keep"

SFInt32 [in,out] bitMask -1

}

ColorMaskMode : X3DAppearanceChildNode {ColorMaskMode : X3DAppearanceChildNode {

SFBool [in,out] maskR TRUE

SFBool [in,out] maskG TRUE

SFBool [in,out] maskB TRUE

SFBool [in,out] maskA TRUE

}

FaceMode : X3DAppearanceChildNode {

SFString [in,out] cullFace "auto"

SFString [in,out] frontFace "auto"

SFString [in,out] frontMode "auto"

Render States
SFString [in,out] backMode "auto"

SFFloat [in,out] offsetFactor 0

SFFloat [in,out] offsetBias 0

}

BlendMode : X3DAppearanceChildNode {

SFString [in,out] srcFactor "one"

SFString [in,out] destFactor "zero"

SFColor [in,out] color 1 1 1

SFFloat [in,out] colorTransparency 0

SFString [in,out] alphaFunc "none"

24

SFString [in,out] alphaFunc "none"

SFFloat [in,out] alphaFuncValue 0

}

DepthMode : X3DAppearanceChildNode {

SFBool [in,out] enableDepthTest TRUE

SFString [in,out] depthFunc "none"

SFBool [in,out] readOnly FALSE

SFFloat [in,out] zNearRange -1

SFFloat [in,out] zFarRange -1

}

© 2011 Fraunhofer IGD

CAMERA CONTROL AND VFX

25

CAMERA CONTROL AND VFX

© 2011 Fraunhofer IGD

Extending the Camera: Cinematographic Camera Placem ent

� X3D describes content declaratively

� …but placing a Viewpoint properly requires tools or trial

� Especially camera animations with moving targets

� Describe camera pose and moves/ framing on screen declaratively

� Standard interactive navigation modes not adequate

� Creative people tend to think in images

� …but not how to achieve them by defining 3D position/orientation

� For storyboarding/ film scenes camera is defined relative to objects� For storyboarding/ film scenes camera is defined relative to objects

� Cinematographic Viewpoint: declarative approach to camera placement

� Idea based on well-established techniques from the film area

� Allows specifying what objects shall appear where on screen

� Intuitive framing of objects useful for pre-vis

� Supports camera moves that are bound to interactive content

� Camera/ Viewpoint additionally includes special visual effects as child nodes

� DepthOfFieldFX, BlurFX, SketchFX, etc.

Extending the Camera: Cinematographic Camera Placem ent

properly requires tools or trial-and-error

Especially camera animations with moving targets

Describe camera pose and moves/ framing on screen declaratively

Standard interactive navigation modes not adequate

…but not how to achieve them by defining 3D position/orientation

For storyboarding/ film scenes camera is defined relative to objects

26

For storyboarding/ film scenes camera is defined relative to objects

Cinematographic Viewpoint: declarative approach to camera placement

established techniques from the film area

Allows specifying what objects shall appear where on screen

vis or dialog systems

Supports camera moves that are bound to interactive content

Camera/ Viewpoint additionally includes special visual effects as child nodes

© 2011 Fraunhofer IGD

Jung, Y., and Behr, J. Towards a new camera model for X3D. Web3D 2009.

The CinematographicViewpoint Node
X3DViewpointNode : X3DBindableNode {

MFNode [in,out] effects []

[...]

}

CinematographicViewpoint : X3DViewpointNode {

[...]

MFNode [in,out] objectsFull []

MFNode [in,out] objectsCloseUp []

SFVec3f [in,out] facingDir 0 0 1

SFVec3f [in,out] upVector 0 1 0

MFVec2f [in,out] minScreenPos []

MFVec2f [in,out] maxScreenPos []

SFString [in,out] shotSize "auto"

SFFloat [in,out] shotAngle 0

SFFloat [in,out] shotPitch 0

SFFloat [in,out] shotRoll 0

SFString [in,out] follow "none“

}

Node

� Perspective camera node

� Has effects field for VFX

� objectsCloseUp field

� Refers to scene object, e.g. head

� For given shot sizes, starting with ‘close’

� objectsFull: other shots (refers to human)

� shotSize: common shot sizes for actors

27

�

� min-/maxScreenPos

� Bbox in normalized screen coordinates

� Refers to objectsFull/ objectsCloseUp field

� Modified by shotSize

� shotAngle/-Pitch/-Roll

� Offset from line of action/ floor/ up vector

� follow: target nodes continuously or not
© 2011 Fraunhofer IGD

Special Visual Effects (VFX)

X3DVisualEffects : X3DNode {

SFBool [in,out] enabled TRUE

}

SketchFX : X3DVisualEffects {

SFBool [in,out] enabled TRUE

SFInt32 [in,out] thickness 1

}

� Specific to camera and lens system, usually implemented as post

}

DepthOfFieldFX : X3DVisualEffects {

SFFloat [in,out] focalDepth 10.0

SFFloat [in,out] blurCutoff 0.7

}

HDRRenderingFX : X3DVisualEffects {

SFFloat [in,out] exposure 1.64

SFFloat [in,out] brightnessThreshold 1.0

}

ScreenSpaceAmbientOcclusionFX :
X3DVisualEffects {

SFFloat [in,out] scale 0.001

SFFloat [in,out] attenuation 0.001

}

MotionBlurFX : X3DVisualEffects {

SFString [in,out] type "auto"

Specific to camera and lens system, usually implemented as post-processing step on GPU (DoF, blur,…)

28

SFFloat [in,out] strength 0.02

}

BlurFX : X3DVisualEffects {

SFBool [in,out] enabled TRUE

SFString [in,out] kernelType "auto"

SFInt32 [in,out] kernelSize 5

SFBool [in,out] grain FALSE

SFBool [in,out] blackAndWhite FALSE

}

© 2011 Fraunhofer IGD

Enhancing Quality with VFX

No DepthOfFieldFX ; DoF and character nearby; different focal depth; character further away

BlurFX effects node for old-fashioned look of chapel scene: standard rendering, only blur with
grain, black-and-white rendering, all effects combined (black

and character nearby; different focal depth; character further away

29

fashioned look of chapel scene: standard rendering, only blur with
white rendering, all effects combined (black-and-white, slight blur, grain)

© 2011 Fraunhofer IGD

Thank you!

Questions?

Thank you!

30

Questions?

© 2011 Fraunhofer IGD

